人人草人人-欧美一区二区三区精品-中文字幕91-日韩精品影视-黄色高清网站-国产这里只有精品-玖玖在线资源-bl无遮挡高h动漫-欧美一区2区-亚洲日本成人-杨幂一区二区国产精品-久久伊人婷婷-日本不卡一-日本成人a-一卡二卡在线视频

 
First-seen gravitational wave event named Science's Breakthrough of the Year
                 Source: Xinhua | 2017-12-22 06:27:01 | Editor: huaxia

Radio image shows the GW170817 neutron star merger. Scientists announced Monday that they have for the first time detected the ripples in space and time known as gravitational waves as well as light from a spectacular collision of two neutron stars. (Xinhua/Gregg Hallinan of Caltech and Kunal Mooley of Oxford University)

WASHINGTON, Dec. 21 (Xinhua) -- The first observations of a neutron-star merger in both gravitational waves and light were named on Thursday by the influential U.S. journal Science as 2017's Breakthrough of the Year.

It's the second year in a row that editors of the U.S. scientific magazine have awarded its highest yearly honor to a discovery linked to gravitational waves, the ripples in space and time caused by the most powerful and energetic events in the universe.

"Gravitational waves are the gift that keeps on giving," explained Science News Editor Tim Appenzeller. "Being able to get the full picture of violent events like this promises to transform astrophysics, and that made this year's observation the clear Breakthrough for 2017."

Originally predicted in the early 20th century by Albert Einstein, gravitational waves were not detected until 2015, when the U.S. Laser Interferometer Gravitational-Wave Observatory (LIGO) identified a signal caused by two black holes spiraling towards each other and merging.

Illustration Image shows two merging neutron stars. The narrow beams represent the gamma-ray burst while the rippling spacetime grid indicates the isotropicgravitational waves that characterize the merger. Swirling clouds of material ejected from the merging stars are a possible source of the light that was seen at lower energies. Scientists announced Monday that they have for the first time detected the ripples in space and time known as gravitational waves as well as light from a spectacular collision of two neutron stars. (Xinhua/National Science Foundation/LIGO/Sonoma State University/A. Simonnet.)

It's a major discovery that won the Nobel Prize in Physics this year, in addition to landing Science's Breakthrough of the Year for 2016.

Then, on Aug. 17 this year, scientists not only, for the first time, observed the space tremor from a collision of two neutron stars 130 million light years away using the LIGO detectors, they also saw the event at all wavelengths of light, from gamma rays all the way to radio, with ground- and space-based telescopes.

"The explosion was easily the most-studied event in the history of astronomy: Some 3,674 researchers from 953 institutions collaborated on a single paper summarizing the merger and its aftermath," Science staff writer Adrian Cho wrote in an accompanying article.

Cho highlighted the importance of using gravitational waves as a new way of observing the universe.

"The blast confirmed several key astrophysical models, revealed a birthplace of many heavy elements, and tested the general theory of relativity as never before," he said.

Cho further noted that the merger only "whetted astrophysicists' appetites for more data."

"Researchers plan to increase LIGO's sensitivity at high frequencies -- for instance, by manipulating the laser light circulating in the massive detectors -- but doing so may take a few years," he added.

Image made by Caltech and NASA shows the UV/IR/Radio discovery of neutron star merger in NGC 4993. Scientists announced Monday that they have for the first time detected the ripples in space and time known asgravitational waves as well as light from a spectacular collision of two neutron stars.
(Xinhua/Robert Hurt of Caltech, Mansi Kasliwal of Caltech, Gregg Hallinan of Caltech, Phil Evans of NASA and the GROWTH collaboration)

Jeremy Berg, the editor-in-chief of Science, said in an accompany editorial that the multidimensional, detailed observations of the collision of two neutron stars represent "an exciting new phase of astronomy with tremendous potential for the future -- and a great example of 'big science.'"

"Although discoveries from LIGO have been relatively rapid, they overlie a long history of painstaking work by scientists and engineers, as well as patient support from the U.S. National Science Foundation, which has invested 1.1 billion U.S. dollars in LIGO since 1990," he wrote.

"For those directly involved, it must be extraordinarily gratifying to see decades of effort come to fruition in such a spectacular fashion and to have made such contributions to truly universal questions."

Image made by Caltech and NASA shows the evolution of neutron star merger confirming heavy element synthesis. Scientists announced Monday that they have for the first time detected the ripples in space and time known asgravitational waves as well as light from a spectacular collision of two neutron stars.
(Xinhua/Robert Hurt of Caltech, Ryan Lau of Caltech, Leo Singer of NASA, Mansi Kasliwal of Caltech and the GROWTH collaboration)

Other scientific achievements in the journal's annual top 10 list included:

-- Scientists identified a new species of orangutan on the Indonesian island of Sumatra-the first great ape species to be discovered since the bonobo in 1926.

-- A technique called cryo-electron microscopy provided fresh insights this year into many of life's key molecules, and is fast reshaping the field of structural biology.

-- Following their colleagues in physics, biologists posted unreviewed papers known as preprints online in record numbers this year, leading to "a major cultural change in communication."

-- Biologists made a big advance in editing DNA and RNA, developing techniques to transform one nucleotide base into another at a precise point in a genome.

-- The U.S. Food and Drug Administration (FDA) approved the first drug to treat solid tumors based not on where it originated, but on a particular genetic defect.

-- Scientists drilled and retrieved a 2.7-million-year-old ice core from Antarctica, which is 1.7 million years older than any previous ice sample.

-- Paleoanthropologists determined that a Homo sapiens skull from Morocco is 300,000 years old, pushing back our species origins by 100,000 years.

-- The U.S. FDA approved three gene therapy products, the first of their kind.

-- Physicists used a detector the size of a milk jug to observe neutrinos pinging off atomic nuclei in a way never seen before, confirming a 40-year-old prediction and opening the way for portable detectors of these elusive particles.

Back to Top Close
Xinhuanet

First-seen gravitational wave event named Science's Breakthrough of the Year

Source: Xinhua 2017-12-22 06:27:01

Radio image shows the GW170817 neutron star merger. Scientists announced Monday that they have for the first time detected the ripples in space and time known as gravitational waves as well as light from a spectacular collision of two neutron stars. (Xinhua/Gregg Hallinan of Caltech and Kunal Mooley of Oxford University)

WASHINGTON, Dec. 21 (Xinhua) -- The first observations of a neutron-star merger in both gravitational waves and light were named on Thursday by the influential U.S. journal Science as 2017's Breakthrough of the Year.

It's the second year in a row that editors of the U.S. scientific magazine have awarded its highest yearly honor to a discovery linked to gravitational waves, the ripples in space and time caused by the most powerful and energetic events in the universe.

"Gravitational waves are the gift that keeps on giving," explained Science News Editor Tim Appenzeller. "Being able to get the full picture of violent events like this promises to transform astrophysics, and that made this year's observation the clear Breakthrough for 2017."

Originally predicted in the early 20th century by Albert Einstein, gravitational waves were not detected until 2015, when the U.S. Laser Interferometer Gravitational-Wave Observatory (LIGO) identified a signal caused by two black holes spiraling towards each other and merging.

Illustration Image shows two merging neutron stars. The narrow beams represent the gamma-ray burst while the rippling spacetime grid indicates the isotropicgravitational waves that characterize the merger. Swirling clouds of material ejected from the merging stars are a possible source of the light that was seen at lower energies. Scientists announced Monday that they have for the first time detected the ripples in space and time known as gravitational waves as well as light from a spectacular collision of two neutron stars. (Xinhua/National Science Foundation/LIGO/Sonoma State University/A. Simonnet.)

It's a major discovery that won the Nobel Prize in Physics this year, in addition to landing Science's Breakthrough of the Year for 2016.

Then, on Aug. 17 this year, scientists not only, for the first time, observed the space tremor from a collision of two neutron stars 130 million light years away using the LIGO detectors, they also saw the event at all wavelengths of light, from gamma rays all the way to radio, with ground- and space-based telescopes.

"The explosion was easily the most-studied event in the history of astronomy: Some 3,674 researchers from 953 institutions collaborated on a single paper summarizing the merger and its aftermath," Science staff writer Adrian Cho wrote in an accompanying article.

Cho highlighted the importance of using gravitational waves as a new way of observing the universe.

"The blast confirmed several key astrophysical models, revealed a birthplace of many heavy elements, and tested the general theory of relativity as never before," he said.

Cho further noted that the merger only "whetted astrophysicists' appetites for more data."

"Researchers plan to increase LIGO's sensitivity at high frequencies -- for instance, by manipulating the laser light circulating in the massive detectors -- but doing so may take a few years," he added.

Image made by Caltech and NASA shows the UV/IR/Radio discovery of neutron star merger in NGC 4993. Scientists announced Monday that they have for the first time detected the ripples in space and time known asgravitational waves as well as light from a spectacular collision of two neutron stars.
(Xinhua/Robert Hurt of Caltech, Mansi Kasliwal of Caltech, Gregg Hallinan of Caltech, Phil Evans of NASA and the GROWTH collaboration)

Jeremy Berg, the editor-in-chief of Science, said in an accompany editorial that the multidimensional, detailed observations of the collision of two neutron stars represent "an exciting new phase of astronomy with tremendous potential for the future -- and a great example of 'big science.'"

"Although discoveries from LIGO have been relatively rapid, they overlie a long history of painstaking work by scientists and engineers, as well as patient support from the U.S. National Science Foundation, which has invested 1.1 billion U.S. dollars in LIGO since 1990," he wrote.

"For those directly involved, it must be extraordinarily gratifying to see decades of effort come to fruition in such a spectacular fashion and to have made such contributions to truly universal questions."

Image made by Caltech and NASA shows the evolution of neutron star merger confirming heavy element synthesis. Scientists announced Monday that they have for the first time detected the ripples in space and time known asgravitational waves as well as light from a spectacular collision of two neutron stars.
(Xinhua/Robert Hurt of Caltech, Ryan Lau of Caltech, Leo Singer of NASA, Mansi Kasliwal of Caltech and the GROWTH collaboration)

Other scientific achievements in the journal's annual top 10 list included:

-- Scientists identified a new species of orangutan on the Indonesian island of Sumatra-the first great ape species to be discovered since the bonobo in 1926.

-- A technique called cryo-electron microscopy provided fresh insights this year into many of life's key molecules, and is fast reshaping the field of structural biology.

-- Following their colleagues in physics, biologists posted unreviewed papers known as preprints online in record numbers this year, leading to "a major cultural change in communication."

-- Biologists made a big advance in editing DNA and RNA, developing techniques to transform one nucleotide base into another at a precise point in a genome.

-- The U.S. Food and Drug Administration (FDA) approved the first drug to treat solid tumors based not on where it originated, but on a particular genetic defect.

-- Scientists drilled and retrieved a 2.7-million-year-old ice core from Antarctica, which is 1.7 million years older than any previous ice sample.

-- Paleoanthropologists determined that a Homo sapiens skull from Morocco is 300,000 years old, pushing back our species origins by 100,000 years.

-- The U.S. FDA approved three gene therapy products, the first of their kind.

-- Physicists used a detector the size of a milk jug to observe neutrinos pinging off atomic nuclei in a way never seen before, confirming a 40-year-old prediction and opening the way for portable detectors of these elusive particles.

010020070750000000000000011105521368437511
主站蜘蛛池模板: 波多野结衣一区二区 | 亚洲日本精品 | 欧美黑人啪啪 | 国产一区二区三区视频在线播放 | 国产色在线观看 | 欧美精品自拍 | 欧美三级 欧美一级 | 亚洲精品中文字幕在线观看 | 日韩欧美高清视频 | 亚洲激情在线播放 | 色操插| 日韩男女视频 | 亚洲精品视| 亚洲精品久久久久久一区二区 | 激情导航| 中文国产 | 国产99在线 | 6—12呦国产精品 | 精品一区二区三区在线观看 | 亚洲色视频 | 日日摸天天添天天添破 | 一级的大片 | 99伊人网| 最新黄色av网站 | 麻豆视频免费入口 | 欧美一级高潮片 | 日韩三级视频在线播放 | 日本在线视频中文字幕 | 极品粉嫩小仙女高潮喷水久久 | 亚洲免费视频观看 | 韩日免费av | 日韩作爱视频 | 外国黄色录像 | 日韩精品在线免费视频 | 久久久久久九九 | 日韩在线视频不卡 | 亚洲在线视频播放 | 美女十八毛片 | 亚洲精品在线网站 | 久草免费在线视频 | 91视频污在线观看 | 久久青青操| 相亲对象是问题学生动漫免费观看 | 一本色道久久综合亚洲精品小说 | 亚洲精品成人久久 | 337p粉嫩大胆噜噜噜亚瑟影院 | 脱裤吧导航 | 亚洲国产精品欧美久久 | 国产精品日本 | 国产免费片 | 91毛片网站 | 精品在线播放 | 三级男人添奶爽爽爽视频 | 91尤物视频在线观看 | 久久91久久 | 一本视频| 中文字幕精品久久久久人妻红杏1 | 国产自产在线 | 日本一区二区在线免费观看 | 在线视频 一区二区 | 中文字幕一区二区三区免费视频 | 欧美亚洲激情 | 国产精品88 | 又黄又爽网站 | 91偷拍网 | 亚洲国产成人精品一区二区三区 | www.色国产 | 成人毛片100免费观看 | 视频在线观看免费 | 亚洲色图13p | 亚洲啊啊啊啊啊 | 成人吃奶视频 | 久操视频在线播放 | 欧美成人精品欧美一级私黄 | 一本色道久久综合亚洲精品小说 | 亚洲黄色网址大全 | 欧美久久久久久久久久久 | av影视网 | 中文字幕不卡在线观看 | 射射av| 在线不卡日韩 | 久久婷婷国产麻豆91 | 日韩夜夜高潮夜夜爽无码 | 国产一区中文字幕 | 国产婷婷色一区二区在线观看 | 青青操国产 | 免费麻豆国产一区二区三区四区 | 国产三级短视频 | 久久男人 | 亚洲三级在线看 | 日韩美女激情 | 黄色三级视频 | 激情www| 亚洲精品一区二区三区新线路 | av在线播放一区二区三区 | 精品久久久久久久久久久aⅴ | 大肉大捧一进一出好爽视频 | 成人a视频在线观看 | 欧美乱妇高清无乱码 |