人人草人人-欧美一区二区三区精品-中文字幕91-日韩精品影视-黄色高清网站-国产这里只有精品-玖玖在线资源-bl无遮挡高h动漫-欧美一区2区-亚洲日本成人-杨幂一区二区国产精品-久久伊人婷婷-日本不卡一-日本成人a-一卡二卡在线视频

China Focus: Chinese scientists aim for world's most detailed 3D map of human brain

Source: Xinhua| 2018-12-06 11:49:06|Editor: Chengcheng
Video PlayerClose

by Yu Fei, Han Song, Hu Zhe

NANJING, Dec. 6 (Xinhua) -- Why do some brains discover the laws of universe, while others create soul-stirring music or paintings? How is memory and consciousness generated?

We can observe billions of stars and detect ripples in space, but we still barely understand our brains, which can fathom the universe.

Their sophisticated structure and the number of neurons are only estimates.

Now Chinese scientists are planning to draw the clearest yet three-dimensional map of the intricate neurons and blood vessels in the human brain.

This ambitious project is like taking 3D photos of a huge forest of nearly 100 billion trees, seeing not only the whole forest, but also every twig and leaf on each tree.

"Our current methods cannot see both the trees and the forest. We aim to develop new methods to obtain a high-resolution map to see clearly how the neural network is connected," said Luo Qingming, leader of the research.

Luo, president of Hainan University and chief scientist of the Suzhou Institute for Brainsmatics of the Huazhong University of Science and Technology (HUST), in east China's Jiangsu Province, said the research will help in analyzing the mechanisms of brain diseases, and promote the development of artificial intelligence.

"The continuous changes of neural networks and brain activities pose great challenges to the analysis of brain functions. But we believe that brain functions and activities depend on the basic cells, just as a circuit network depends on its basic unit - the electronic components," said Luo.

"Different types of neurons are the basis for the analysis of brain functions and for the diagnosis and treatment of brain diseases," he said.

INNOVATIVE METHOD

Luo, 52, was born in rural Qichun County, central China's Hubei Province. At middle school, he had to study by the light of a kerosene lamp. He still has a scar on his hand from an accident of chopping firewood after school to help feed his family.

In the 1990s, Luo was a photoelectron researcher in the United States and was the first-ever person to succeed in measuring brain activity by means of near-infrared optical imaging. His technology was awarded a U.S. patent.

However, he left the high-quality research conditions abroad and returned to China to work in his alma mater, HUST, in 1997.

"I feel that I should contribute to my country," said Luo, who launched his project with a starting budget of just 200,000 yuan (about 30,000 U.S. dollars) and a lab of 25 square meters.

Brain imaging is extremely difficult, as it requires expertise in different disciplines.

"The brain is as soft as bean curd. It is difficult to fix brain samples and mark the nerves and blood vessels inside. It took us three years to solve that problem," Luo said.

"We need researchers with different academic backgrounds, such as biologists and chemists to prepare brain samples, engineers and technicians with optical, mechanical and control technology to develop the imaging instruments, and computer talents to process data and display the results."

The team took eight years to develop a brain-imaging instrument with independent intellectual property rights.

The achievement was published on the journal, Science, at the end of 2010, and was ranked as one of the top 10 scientific advances in China in 2011.

MAPPING BRAINS

"If we compare the imaging system to a camera, we first made a black-and-white camera and took black-and-white pictures of a mouse brain," Luo explained.

Since then, his team has made a series of breakthroughs to take pictures in rich colors showing amazing details of the mouse brain.

In 2016, the team received an investment of 450 million yuan to set up the Suzhou Institute for Brainsmatics, a development reported in the journal, Nature.

In the spotless lab at the institute, a mouse brain sample, wrapped in resin like a piece of amber, is sliced into layers just one micron thick.

Each layer is scanned and imaged. About 10,000 layers are sliced to get a map of the whole mouse brain.

The images of the colorful neural and vascular systems shown on the computer look like intricate highway networks. This is the world's clearest map of a mammal brain.

"We have achieved success with mice, and are making efforts to map the brains of primates which are more advanced and complicated," said Li.

"Our ultimate goal is to lead the world to get a precise map of the human brain, which will help us uncover its secrets."

TECHNICAL CHALLENGES

Scientists estimate a mouse brain has tens of millions of neurons, and a monkey brain has billions, while a human brain has about 86 billion.

"We cannot map a human brain by just adding more instruments. The huge amount of data after imaging would pose great challenges for storage and analysis," Li said.

It's estimated that the data generated from imaging a human brain would be equivalent to 200,000 movies of 4K ultra-high-definition, which would fill all the storage space of the Sunway TaihuLight, China's most powerful supercomputer.

Computing is the biggest technical bottleneck, and mapping the human brain must wait for the development of IT technology, Luo said.

Human brain scanning and imaging also faces ethical challenges. "We mark the neurons in a mouse brain with transgenic technology and virus labeling technology, which cannot be applied to a human brain," Li said.

"There are countless technical problems to overcome, but we believe that with the development of technology, these problems will be solved."

The team cooperates with labs and institutes in the United States and provides data for brain research in Europe and other countries. But Luo is looking forward to the launch of China's own brain science program.

Brain science is listed as one of the major scientific and technological projects of China's 13th five-year plan (2016-2020).

"This research could help promote children's education, and facilitate the diagnosis and treatment of brain-related diseases such as depression, Parkinson's disease and Alzheimer's disease," said Luo.

"Once we have sufficient financial support and concentrate our efforts, it will be possible to get a high-resolution map of the human brain in five to 10 years."

(Xinhua reporters Xia Peng and Li Bo also contributed to the story.)

TOP STORIES
EDITOR’S CHOICE
MOST VIEWED
EXPLORE XINHUANET
010020070750000000000000011100001376548121
主站蜘蛛池模板: 热热热热色 | 97在线观视频免费观看 | 人妻无码中文字幕 | www成人啪啪18软件 | 国产视频手机在线 | 亚洲欧美字幕 | 天天爱夜夜操 | 国产精品日韩在线观看 | 国产性在线 | 少妇喷潮明星 | 中文字幕精品久久 | 日本在线一区二区 | 粗大的内捧猛烈进出视频 | 国产情侣啪啪 | 国产欧美日韩精品在线观看 | 91sao| 91免费看黄 | 青娱乐国产在线视频 | 99久久99久久免费精品蜜臀 | 亚洲熟妇av日韩熟妇在线 | 97av在线 | 韩国性猛交╳xxx乱大交 | 精品欧美一区二区精品少妇 | 伊人久久一区二区 | av夜夜| 香蕉久久网 | 亚洲射射射 | 日本偷拍一区 | 中文综合网 | 国产美女自拍 | 国产毛片毛片 | 中国一区二区视频 | 女人18毛片水真多 | 国产在线播放av | 中国一区二区三区 | 成人免费午夜视频 | 精品亚洲国产成av人片传媒 | av永久| 欧美视频在线观看一区二区三区 | 看av在线| 免费的av网站 | 免费观看污视频 | 国产日韩欧美中文字幕 | 免费在线观看污 | 人妻熟女一区二区三区app下载 | 狠狠干少妇 | 成人深夜福利视频 | 亚洲精品69 | 精品成人一区二区三区 | 日本69式三人交 | 精品久久一区二区三区 | 西西人体大胆4444ww张筱雨 | 91影院在线观看 | 久久久99久久| 嫩草导航 | 91久久极品少妇xxxxⅹ软件 | 成年女人色毛片 | 在线不卡一区 | 美女又爽又黄免费 | 成人免费视频网站在线观看 | 奶波霸巨乳一二三区乳 | 亚洲黄色一区二区三区 | 五月天av在线 | 美女在线观看www | 国产精品毛片一区二区 | 精品无码一区二区三区电影桃花 | 强开乳罩摸双乳吃奶羞羞www | 国产精品999久久久 午夜天堂影院 | xxxx在线播放 | 男女视频免费看 | 日韩无码专区 | 久久国产乱子伦精品 | 成人在线三级 | 写真福利片hd在线播放 | 免费黄色小视频 | 日韩国产精品一区二区三区 | 在线高清观看免费观看 | 丰满护士巨好爽好大乳 | 亚洲一级影片 | 成人午夜视频精品一区 | 久热免费在线 | 成人久久一区 | 国产一级片中文字幕 | 免费极品av一视觉盛宴 | 成人小片| 国际av在线 | 国产剧情一区二区 | 亚洲天堂福利 | 国产成人99 | 亚洲av鲁丝一区二区三区 | 亚洲男女啪啪 | 在线99视频 | 成人h视频| 成年人福利 | 欧美粗暴jizz性欧美20 | 999精品在线观看 | 在线播放你懂得 | 91搞| 麻豆视频免费版 |