人人草人人-欧美一区二区三区精品-中文字幕91-日韩精品影视-黄色高清网站-国产这里只有精品-玖玖在线资源-bl无遮挡高h动漫-欧美一区2区-亚洲日本成人-杨幂一区二区国产精品-久久伊人婷婷-日本不卡一-日本成人a-一卡二卡在线视频

Stanford AI-powered research locates nearly all solar panels across U.S.

Source: Xinhua| 2018-12-21 07:31:01|Editor: Xiaoxia
Video PlayerClose

SAN FRANCISCO, Dec. 20 (Xinhua) -- Scientists from U.S. Stanford University can easily locate almost every solar panel installed across the United States by resorting to a deep-learning-powered tool that sorts more than 1 billion satellite images, a new study shows.

The Stanford scientists worked out a deep learning system called DeepSolar, which mapped about 1.7 million visible solar panels by analyzing more than 1 billion high-resolution satellite images with a machine learning algorithm and identified nearly every solar power installation in the contiguous 48 states.

The research team trained the machine learning DeepSolar program to find solar panel installations, whether they are large solar farms or individual rooftop facilities, by providing it with about 370,000 images, each covering about 100 feet (about 30.4 meters) by 100 feet.

DeepSolar learned to identify features of the solar panels such as color, texture and size without being taught by humans.

By using this new approach, the researchers were able to analyze the billion satellite images to find solar installations -- a workload that would have taken existing technology years to complete, but was done within one month with the help of DeepSolar.

"We can use recent advances in machine learning to know where all these assets are, which has been a huge question, and generate insights about where the grid is going and how we can help get it to a more beneficial place," said Ram Rajagopal, associate professor of civil and environmental engineering at Stanford.

The results of the research, which was published Wednesday in the science journal Joule, can help governments decide on renewable energy strategies, track the distribution of install solar panels or plan for optimal economic development in a given community.

"We are making this public so that others find solar deployment patterns, and build economic and behavioral models," said Arun Majumdar, a professor of mechanical engineering at Stanford who is also a co-supervisor of the project.

TOP STORIES
EDITOR’S CHOICE
MOST VIEWED
EXPLORE XINHUANET
010020070750000000000000011100001376883991
主站蜘蛛池模板: 图片区偷拍区小说区 | 青青草免费在线观看 | www.色在线观看 | 成人区精品一区二区婷婷 | 免费在线观看一区 | 大奶在线播放 | 蜜臀av一区 | 韩日成人 | 色吊丝av中文字幕 | 一女二男一黄一片 | 日韩一区二区三区在线观看 | 日本性久久 | 欧美人妻精品一区二区三区 | 久久久18禁一区二区三区精品 | 精品黑人一区二区三区国语馆 | 亚洲日本欧美 | 五月天婷婷久久 | 蜜桃成熟时李丽珍国语 | 国产国拍精品亚洲 | 天天色成人 | 美女一二三区 | 天天操操操操操 | 欧美极品少妇 | 黄色应用在线观看 | 男人天堂综合 | 日本黄色免费视频 | аⅴ资源新版在线天堂 | 在线只有精品 | 日韩欧美中文字幕一区二区三区 | 东京热一区二区三区四区 | 欧美肉大捧一进一出免费视频 | 蜜桃视频无码区在线观看 | 97超级碰碰人妻中文字幕 | 91传媒在线免费观看 | 伊人久久超碰 | 精品国产av无码 | 一级黄色大片 | 国产av一区二区三区精品 | www夜夜操 | 日韩素人 | 777精品久无码人妻蜜桃 | 色天天综合 | 深夜福利电影 | 视频一区二区三区四区五区 | h网站在线播放 | 麻豆av一区二区三区久久 | 美女啪啪无遮挡 | 男同激情视频 | 亚洲综合激情 | 亚洲福利一区 | gogo人体做爰aaaa | 国产精品视频麻豆 | 日本理伦片午夜理伦片 | 欧美视频在线免费 | 国产91精品欧美 | 精品少妇一区二区三区密爱 | 色大师在线观看 | 99视频在线播放 | 国产精品九九九 | 黄色污网站在线观看 | 91av网址 | 美女性高潮视频 | 自拍偷拍第3页 | 一二区精品 | www.色就是色.com | 久久99精品国产麻豆婷婷洗澡 | 超碰超碰97 | 给我免费观看片在线电影的 | av性在线 | 色午夜| 日日夜夜拍 | 国产情侣酒店自拍 | 日本中文字幕网 | 丁香婷婷综合激情五月色 | 久久伊人在| 91网在线 | 久久成人网18网站 | 丁香婷婷激情 | 亚洲免费视频观看 | 天堂资源中文在线 | 草久久久 | 精品人妻一区二区三区四区久久 | 久久综合导航 | 精品国产www| 成人激情视频网 | 国产不雅视频 | 男人天堂2014| 成人精品影院 | 成人av福利| 天天干天天干天天干 | 日韩av激情 | 老师上课夹震蛋高潮了 | 被室友玩屁股(h)男男 | 久久人人爽爽 | a天堂视频 | 男女靠逼视频 | 九九久久精品 | 久久性av | 台湾佬在线|